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Rangeland ecosystems and their roles in providing ecosystem services are vulnerable to changes in climate, CO2

concentration, and management. These drivers forcing widespread changes in rangeland ecosystem processes
and vegetation dynamics create two-way interactions and feedback loops between biogeochemistry and vegeta-
tion composition. To support spatial simulation and forecasting in the global rangelands, the G-Range global
rangelands model couples biogeochemical submodels from the CENTURY soil organic matter model with dy-
namic populations’ submodels for herbs, shrubs, and trees. Here is presented a model description for G-Range,
including novel elements of G-Range and implementation of CENTURY code. An initial evaluation of G-Range
at global and site scales follows. G-Range outputs for net primary productivity (NPP) and vegetation cover
(herbs, shrubs, trees, bare ground) were evaluated against global MODIS layers at global and site scales, and
aboveground and belowground NPP were compared with field data from globally distributed sites. Most
model outputs evaluated were within the range of a priori benchmarks for tolerable absolute or relative error
(two benchmarks per output, at two scales, for five outputs of NPP and vegetation cover). Trade-offs in model
fit among variables, datasets, and scales indicated practical constraints on improving model fit with respect to
the selected evaluation datasets, especially field NPP versus MODIS NPP. The relative effects of multiple drivers
of rangeland vegetation changewere the greatest sources of uncertainty inmodel outputs. G-Range is best suited
to scenario analysis of large-scale and long-term impacts of climate, CO2, andmanagement on rangeland ecosys-
tem processes and vegetation, aswell as ecosystem services, such as production of forage and browse and carbon
sequestration.
© 2019 The Authors. Published by Elsevier Inc. on behalf of The Society for Range Management. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Rangelands, extensivelymanaged grazing landswith natural or semi-
natural vegetation (Grice and Hodgkinson, 2002), cover more terrestrial
surface than any other land use, includingmost of thedrylands that com-
prise nearly 40% of global land (White et al., 2002). These ecosystems ac-
count for substantial portions of the global C, water, and nutrient cycles
and deliver local and global environmental benefits in the forms of hy-
drological regulation and C storage, among others. Rangelands provide
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much of the forage for a livestock sector that supports the livelihoods
of 1.3 billion people globally, N 75% of whom are income poor (GASL,
2014). Many rangeland and dryland production systems face multiple
stressors, with climate change intensifying the effects of other strains
(Reid et al., 2014) ,such as drought, rangeland fragmentation, increasing
human populations and livestock densities, and land degradation.
Rangelands around the world will likely experience vastly different cli-
mate and CO2 impacts, varying from potentially catastrophic in some re-
gions to beneficial in others (Boone et al., 2018). The effects of
intertwining global change drivers on the structure, composition, and
function of rangeland vegetation are difficult to disentangle (D’Odorico
et al., 2013), as are the cascading effects on ecosystem services, human
well-being, and the vulnerability of people and rangeland ecosystems
to future shocks. Forecasting responses of rangeland ecosystems to
global change scenarios can support strategies for mitigation of global
CO2 emissions and for climate adaptation in dryland production systems.

Ecosystem change in rangelands reflects joint outcomes of drivers
that influence biogeochemical cycles or shift the composition of
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vegetation, often generating further feedbacks on ecosystem processes
and vegetation (Anderies et al., 2002). Drivers that alter woody-grass
balance can entail major shifts in rangeland ecosystem functioning
(Hibbard et al., 2003), as well as the ecosystem services provided
(firstly, forage vs. browse). In drier, disequilibrium rangelands (Von
Wehrden et al., 2012), high spatial and temporal variability (Le
Houérou et al., 1988) and rangeland management practices result in
lagging or otherwise nonlinear outcomes (Reynolds et al., 2007)
reflecting feedbacks among climate, vegetation, hydrology, and soils
(Huxman et al., 2005). Both degradation and rehabilitation processes
are conditional on both climate and management (Dardel et al., 2014),
making lagging ecosystem changes difficult to predict.

Simulation tools arewell suited to exploring possible future rangeland
production systems under such unpredictability and conditionality, yet
there are few pragmatic tools for investigating how climate change and
other global change drivers will alter the structure and function of
rangelands (Derner et al., 2012). Most global models capable of simulat-
ing biogeochemistry alongside vegetation dynamics (Sitch et al., 2008;
Piao et al., 2013) have certain disadvantages in rangelands. Most notably,
savanna vegetation and woody-grass balance is often poorly represented
(or not at all), and an emphasis on mechanistic representation of vegeta-
tion interactions may be constrained by the difficulty of predicting
changes in complex adaptive systems such as arid rangelands.

To address the challenge of modeling ecosystem change in
rangelands globally, the G-Range model was developed by coupling
mechanistic biogeochemical submodels with empirically trained plant
populations submodels. The composition of vegetation in terms of
herb, shrub, and tree cover and bare ground shifts in response to envi-
ronmental (primarily climate and atmospheric CO2) and management
(primarily grazing/browsing and fire) drivers, enabling representation
of complex and variable rangeland ecosystems, from savannas to semi-
desert, that cover large areas of the globe. These climatic and manage-
ment drivers are expected to force future shifts in woody-grass
balance in most rangelands around the world (D’Odorico et al., 2013)
—not only in savannas—andG-Range provides an alternative,more phe-
nomenological approach to modeling vegetation dynamics.

Here and in the associated appendices are presented a description of
G-Range model elements and implementation, including changes from
its biogeochemical foundation, the CENTURY soil organic matter model
(Parton et al., 1993, 1987). Finally, an initial evaluation of G-Range out-
puts based on site- and global-scale data is presented. The primary ob-
jective of evaluation was to assess whether G-Range is fit for its
purpose, simulating the cycling of C, N, and water, and vegetation dy-
namics, in rangeland ecosystems globally.

Material and Methods

Purpose

The G-Range global rangelands model simulates biogeochemical
processes and vegetation change in grasslands, drylands, and other ex-
tensively grazed ecosystems. The model seeks to capture the dynamics
of primary production of forage and browse, decomposition, and the cy-
cling of C, N, and water. G-Range furthermore emulates vegetation dy-
namics by representing changes in, and interactions among,
populations of herbaceous and woody plants.

The ambition of G-Range is to simulate the global rangelands with a
single executable process. The model needed to be simple enough for
rapid global simulation, yet it also needed to capture interannual and
intra-annual variation and directional shifts in essential ecosystem pro-
cesses, as well as differences in ecosystem process rates and competi-
tion among major rangeland plant growth forms, especially in
savannas and other systems with mixed cover of herbaceous and
woody plants. Finally, G-Range needed to provide for scenario analysis,
including changes in climatic conditions and rangeland management
regimes. After considering a large number of range and pasture
simulation models, the CENTURY model (Parton et al., 1993, 1987)
was selected to serve as the biogeochemical foundation of G-Range
(Boone et al., 2011), and a few elements drew inspiration from the re-
lated SAVANNA model (Coughenour, 1994). CENTURY is one of the
models most commonly used for investigating rangeland ecosystems,
especially for carbon cycle research in rangelands (NREL, 2012). How-
ever, no implementation of CENTURY coupledwith dynamic vegetation
existed previously to support forecasting of changes in biogeochemistry
and vegetation structure in rangelands above the landscape scale.
SAVANNA requires months of effort to parameterize a single new site,
making global or even national scale application intractable.

In G-Range, as vegetation cover changes through time, the respective
influences of herbaceous and woody plants on ecosystem processes shift
in accordance with their spatial cover. The capacity of themodel to simu-
late biogeochemical dynamics alongside vegetation change enables pro-
jection of future rangeland ecosystems in response to contrasting
scenarios driven by climate, management, and atmospheric CO2 concen-
tration. G-Range is well suited to large-scale, long-term projections of
rangeland ecosystem structure and function according to scenarios de-
scribing changes in climate andCO2 (Boone et al., 2018) andmanagement
primarily in terms of fire and livestock grazing and browsing.

Model Entities

G-Range runs on amonthly time step in unprojected geographic grid
cells and currently supports grid cell resolutions of 1°, 0.5°, 0.25°, 0.167°,
0.1°, and 0.083°, defaulting to 0.5°. The default spatial extent includes all
rangelands globally, although simulationsmay focus on finer spatial ex-
tents (e.g., regions or countries) to reduce simulation time. Parameters
are assigned uniformly within “landscape units,” grid cells in areas of
the globe considered homogenous in the ecological and management
factors regulating biogeochemical and vegetation dynamics. Landscape
units are defined as 15 biomes (Ramankutty and Foley, 1999), 14 of
which contain rangelands. A rangeland mask is defined on the basis of
Global Land Cover Characterization (GLCC) land cover types (USGS,
2008), yielding the active simulation surface (Fig. 1).

Grid cells are the central model entity in G-Range, which comprise
multiple lower-level model entities in a hierarchical structure. Grid
cells contain surface litter and soil layers, aswell as “facets” representing
different types of vegetation (Fig. 2). Vegetation facets indicate spatial
cover of three plant growth forms or functional types—herbs, shrubs,
and trees—that together occupy a spatially inexplicit 1-km2 area (with
bare ground in the remainder) that represents the larger grid cell. The
1-km2 area was selected merely to reduce computation time, which
would be much longer at grid cell scale. Vegetation facets produce bio-
mass and influence the surface and soil layers in accordance with their
respective ecosystem process rates and spatial cover. Grid cells have
one surface layer (microbial biomass associated with decomposing
aboveground litter) and four soil layers, with each soil layer 15 cm
deep, for a total depth of 60 cm.

G-Range is spatially explicit at grid cell scale, with model inputs
from spatial layers driving ecosystem processes and vegetation dynam-
ics according to the location and rangeland type (biome) of the grid cell.
Within grid cells, the model is spatially inexplicit and simulates vegeta-
tion facets without reference to location inside the grid cell.

Vegetation facets are composed of vegetation layers and plant parts
that represent, respectively, overstory versus understory vegetation and
within-plant allocation and tissue turnover. The herb facet (facet 1) has
three vegetation layers, herbs (vegetation layer 1), herbs under shrubs
(two), and herbs under trees (three). The shrub facet (facet 2) has
two vegetation layers, shrubs (vegetation layer 4) and shrubs under
trees (five), while the tree facet (facet 3) has a single vegetation layer,
trees (vegetation layer 6). The herb facet has only twoplant parts, leaves
(plant part 1) and fine roots (two). The shrub and tree facets have three
additional parts: fine branches (plant part 3), coarse branches (four),
and coarse roots (five).



Figure 1. Active G-Range simulation surface. Parameter sets are divided among rangeland “landscape units” (i.e., biomes) (Ramankutty and Foley, 1999). Rangeland versus nonrangeland grid cells were defined on the basis of land cover types (USGS,
2008).
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Figure 2. Conceptual diagram of central model entities within the hierarchical model structure of G-Range.
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Vegetation facets are essential to the hierarchical structure of G-Range.
Their most important role is to implement dynamics in vegetation cover.
In addition, facet-level parameters, variables, and processes significantly
but indirectly regulate biogeochemical dynamics at the grid cell level,
through changes in the spatial cover of facets. Biogeochemical processes
themselves—ranging from primary production and transpiration through
effects of litter quantity and quality on decomposition and flows of C and
N to soil pools—are simulated at the scale of 1 m2 as in CENTURY and
SAVANNA (CENTURY, which takes 1m2 as its central spatial unit, is actu-
ally point based or nonspatial; SAVANNA and G-Range nest these calcula-
tions into a hierarchical spatial framework). At the grid cell level, the
magnitude of facet effects on biogeochemical processes scale with the
spatial cover of the facet (see Fig. 2).

A large profile of model state variables captures variation in the attri-
butes anddynamics of rangeland ecosystems andvegetation components,
including ecological state variables and model parameters. Model state
variables in G-Range fall into three main categories: 1) core state vari-
ables, 2) G-Range parameters, and 3) “hard-wired” parameters and vari-
ables, many originating from CENTURY (see Appendix A for full detail).

Core state variables (Appendix B) consist of a wide array of ecosys-
tem attributes calculated from a 2000-yr “spin-up” simulation or a pre-
vious (post-spin-up) simulation. A spin-up is run to enable simulations
to proceed from a long-term equilibrium. After a spin-up, core state var-
iables are read from a saved state variable file at the beginning of a sim-
ulation. Saving a new state file at the end of a simulation allows for
model inputs or parameterization to differ between time periods
(e.g., to change climate or management).

Core state variables (Appendix B) and parameters (Appendix C) are
variously assigned by grid cells, facets, vegetation layers, or plant parts.
These two categories of state variables fall into several groups: “loca-
tion” (geographic and climatic effects), “environmental” (environmen-
tal and abiotic effects and constraints), “management” (effects of
management practices), “structural” (effects of gross ecosystem physi-
cal structure and plant community composition), “temporal” (timing
of events), “functional” (ecosystem process rates), and “allometric” (ef-
fects of within-plant allocation and economics).

Model Design Concepts

The CENTURY soil organic matter model (Parton et al., 1993, 1987)
has an established record as an ecosystem simulator for a variety of
questions and purposes (NREL, 2012). CENTURY continues to be vetted
and improved, and documentation is freely available (NREL, 2000). De-
velopment of G-Range beganwith adapting equations andmodel struc-
tures from CENTURY to accommodate spatial simulation of rangelands
globally. Incorporation of the plant populations’ submodels (Boone
et al., 2011) drew some inspiration from the SAVANNA model
(Coughenour, 1994). To optimize trade-offs among model complexity,
applicability to scales and questions, availability of parameterization
and input data, and programming and computation efficiency,
CENTURY code was sometimes simplified or modified (for full detail,
see Appendix A). A subset of parameters from CENTURY were “hard-
wired” in G-Range (i.e., written into the Fortran 95 code compiled into
the G-Range executable program), notably including pool-specific
rates of soil organic matter turnover and associated respiration.

In G-Range, areal values for ecosystem stocks and fluxes of C, N, and
water at grid cell level are primarily a function of the effects of vegeta-
tion facets on ecosystem processes and the respective cover of vegeta-
tion facets. Vegetation layers (within facets) incorporate effects of
overstory competition on understory plant production, and plant parts
(also within facets) represent the various biomass compartments of in-
dividual plants, their standing stock of elements, rates of growth, and
rates at which dead plant materials of varying quality enter the litter
and soil subsystems.

Decomposition is simulated as a cascading first-order decay model,
where rates of decomposition are primarily controlled by assigning to
each soil organicmatter pool an intrinsic rate of decomposition and a frac-
tion of C lost to respiration. Like CENTURY, G-Range has three soil organic
matter (SOM)poolswithdifferent potential decomposition rates—fast (or
active), intermediate (or slow), and passive—as well as aboveground and
belowground litter pools and a surface microbial pool associated with
decomposing aboveground litter. Although CENTURYmaintains two sep-
arate multipliers used to modify decomposition rates due to 1) the com-
bined effects of temperature and moisture (defac) and 2) the effect of
anaerobic soil conditions (anerob), G-Range combines all three effects
into a single coefficient, as in SAVANNA. Fast SOM has two pools, surface
(litter) and soil (0–60 cm), while intermediate and passive SOM each
have a single soil pool (0–60 cm) and no surface pool.

The plant populations’ submodels simulate the dynamics of plant
populations and facet covers within a spatially inexplicit 1 km2 area as-
sumed to represent the larger grid cell. Plants establish and die in re-
sponse to abiotic constraints and intrafacet and interfacet competition.
Facet-level parameters specify potential linear effects of each factor on
establishment or death, while conditions in the grid cell determine the
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actual effects according to the parameterized linear relationships. Death
is simulated before establishment eachmonth, allowing repopulation of
newly vacant areas. Bare ground within the 1-km2 area is populated
with new individuals of each facet, in this order: trees, shrubs, and
herbs. Herbs and shrubs may establish in unoccupied understory areas
beneath overstory shrubs or trees. The cover of the herb, shrub, and
tree facets specifies the cover of the unshaded or overstory herb,
shrub, and tree vegetation layers, while the cover of the overstory
shrub or tree facet constrains the cover of the understory herb and
shrub vegetation layers. Cover of bare ground is continually updated
as the area not occupied by any facet.

Monthly plant death rates are calculated starting with initial, nomi-
nal death rates, parameterized at facet level. These nominal death rates
are then additively modified by facet-specific parameters for linear ef-
fects of moisture stress, grazing intensity, and self-shading to obtain ac-
tual death rates:

di ¼ ni þwg þ gg þ cg ; ½1�

where ni is the nominal death rate parameterized for facet i,wg is the
effect of moisture stress (as indicated by H2O:PET, the ratio of available
soil water to potential evapotranspiration) in grid cell g on the death
rate, gg is the effect of grazing intensity (fraction of live biomass re-
moved), and cg is the effect of self-shading (same-facet leaf area
index; LAI). The product of the death rate di and total population of in-
dividual plants in each vegetation layer gives the number of plants
dying in the current month. Because fire can potentially occur at any
time of year, and only once per year (in G-Range), fire is handled sepa-
rately frommonthlymortality.When fire occurs, facet-level parameters
for a linear relation between fire severity and the death rate give abso-
lute plantmortality fromfire,which is subtracted from the existing facet
population.

Monthly plant establishment uses logic similar to plant death, with
facet-level parameters setting initial, potential establishment rates, a di-
mensionless, relative value for propagule pressure. These potential rates
are thenmodified by facet-specific parameters for linear effects ofmois-
ture stress, litter biomass, herbaceous root biomass, and woody over-
story cover to obtain actual establishment rates:

ei ¼ si �wg � lg � rg � cg ; ½2�

where si is the potential establishment rate parameterized for facet i, wg

is the effect of moisture stress (H2O:PET) in grid cell g on the establish-
ment rate, lg is the effect of litter biomass, rg is the effect of herbaceous
root biomass, and cg is the effect of overstory cover. Actual establish-
ment, ei, is constrained by existing plant cover. Woody and herbaceous
plants have different competitive effects on establishment; shrub and
tree cover indicate overstory competition, while herbaceous root bio-
mass represents priority effects of prior habitat occupancy.

Biogeochemical dynamics, like CENTURY, are nonspatial yet calcu-
lated as though occurring at the scale of 1 m2. However, because bio-
mass production of understory herbs and shrubs is reduced by
overstory competition, calculation of primary production is handled at
the level of vegetation layers. The cover of the overstory shrub or tree
facet serves as a proxy for the intensity of overstory competitive effects
on understory production. In G-Range, ecosystem processes are simu-
lated mechanistically using calculations functionally analogous to
CENTURY, often using a code identical to CENTURY (generally
CENTURY v4, and in some cases v4.5). The greatest difference between
G-Range and CENTURY is that biogeochemical dynamics scale, accord-
ing to dynamic vegetation cover, up to the level of individual grid cells
distributed around the globe.

While the biogeochemical submodels operate independently from
the plant populations submodels, the hierarchical structure of the
model entails significant dependency among submodels. Areal, grid
cell− level values of ecosystem fluxes involved in primary production,
decomposition, and cycling of C, N, and water are almost entirely deter-
mined by process rates and facet covers:

pg ¼
XF

i¼1

pi � ci; ½3�

where pg is the rate of a given ecosystem process in grid cell g, pi is
the rate of a given ecosystem process under vegetation facet i, ci is the
proportional cover of facet i, and F is the number of facets. The one ex-
ception to this rule is primary production of understory vegetation
layers, which contribute additional production to their respective facets,
as constrained by overstory shading. After calculation of primary pro-
duction, attributes of the understory herb and shrub vegetation layers
are recombinedwith their respective unshaded vegetation layers to ob-
tain facet-level values for use in further computations.

In contrast to the mechanistic representation of biogeochemistry in
G-Range, the controls over vegetation cover and dynamics are largely
phenomenological in origin. In the plant populations’ submodels, the
wide variety of ecological factors affecting plant establishment and
death are collapsed into a minimal set of primary effects on plant popu-
lation growth and mortality. If these primary effects can reproduce ob-
served vegetation structure in rangelands globally, theymay sufficiently
represent the full suite of factors thought to determine historical vege-
tation structure in rangelands around the world—notably climate,
ecohydrology, fire, grazing, and plant competition. G-Rangewas trained
to maintain a reasonable level of agreement with fractional vegetation
cover from MODIS Vegetation Continuous Fields (VCF) (Hansen et al.,
2006) over the course of a 2 000-yr simulation in which the past
100 yr of historical weather data (CRU, 2008) were looped repeatedly
to generate a long-term dynamic equilibrium. That is, the primary ob-
jective in training the plant populations’ submodels was to reproduce
observed historical vegetation structure (from MODIS VCF) under his-
torical climatic conditions over 2 000-yr simulations with qualitatively
limited divergence.

The hierarchical structure of the model and inherent interdepen-
dency among the plant populations and biogeochemical submodels cre-
ates potential for a wide range of emergent ecosystem outcomes.
Drivers such as climate and management can have several classes of di-
rect effects on rangeland ecosystems in G-Range, by directly altering
1) ecosystem process rates only, 2) facet covers only, or 3) both ecosys-
tem processes and facet covers. The effects of scenario drivers in G-
Range differ among biomes and among individual grid cells in the
same biome. When drivers such as climate and grazing alter ecosystem
process rates while facet covers remain stable, ecosystem process rates
at grid cell level will necessarily change (andmay have feedbacks on fu-
ture vegetation dynamics). The converse is also true—as facet covers
change in response to the interplay among drivers and competition, so
too will areal estimates of biogeochemical process rates, even if facet-
specific rates remain unchanged. Drivers that directly affect ecosystem
processes, as well as plant population dynamics, will influence both bio-
geochemical and vegetation dynamics at the same time, leading to
emergent ecosystem structure and dynamics.

Grazing and fire are the primary management drivers in G-Range
(even lightning-ignited fires are affected by land management via fuel
loads). Fertilization is an option, though an uncommon practice in
drier natural or native rangelands. Grazing and fire regulate biogeo-
chemical processes directly, while more intense fire and grazing in-
crease death rates, thereby influencing biogeochemistry indirectly as
well.

Grazing affects biogeochemistry directly through effects on primary
productivity and return of excreted nutrients. Grazing effects on pro-
ductivity are similar to CENTURY—positive, negative, or neutral, de-
pending on the response curve parameters selected and the intensity
of grazing. G-Range takes the further step of using parameters to divide
total “grazing” offtake (also a parameter) among the herb (grazing) and
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shrub and tree facets (browsing) (see Appendix A). C and N inmaterials
consumed by animals return to litter according to parameterized
proportions.

Fire affects biogeochemistry directly by killing plant tissues and re-
moving litter and standing dead biomass. Fire frequency defaults to pa-
rameterization, although fire frequency can be controlled by scheduling
fire occurrence maps on a monthly or annual basis. Borrowing from
SAVANNA, fire severity is a linear function of fuel load (total above-
ground C) adjusted for flammability according to the proportion of
live, green fuels (see Appendix A). When a fire occurs, parameters con-
trol the proportions of shoots, standing dead biomass, and litter that
burn. The proportions of C and N in burned plant materials that are re-
moved as volatile losses, versus deposited to litter in the formof ash, are
also parameterized.

Intense grazing and fire influence population dynamics by exacer-
bating whole-plant death rates. Grazing effects on death rates are pa-
rameterized linear effects (see Eq. 1), as is fire mortality. Because fire
can potentially occur at any time of year, and only once per year (in
G-Range), fire mortality is calculated later in the subroutine, after the
other effects on death rates (see Eq. 1), which are monthly and not an-
nual. When fire occurs, the proportion of each facet killed by fire is a
positive linear function of fire severity and newly dead individuals are
subtracted from facet populations.

A few key assumptions implicit in G-Range, in addition to those
inherited from CENTURY, can be significant considerations in
interpreting model outputs (see also Appendix A). Woody plant cover
(at grid cell scale) serves as a proxy for overstory competition, reducing
the primary production and establishment of understory plants. Over-
story effects on understory production use the CENTURY shading mod-
ifier, which assumes competitive suppression of the understory. The use
of facet covers to represent overstory competitive effects on understory
establishment invokes the simplifying assumption of more intense
competitive effects on understory plants in areas favoring higher den-
sity and abundance of plant growth forms dominant in the overstory.
This assumption is likely more valid at greater spatial and temporal
scales and more likely valid in semiarid to humid rangelands than in
truly arid rangelands.

The model furthermore assumes approximate functional equiva-
lence at the facet level. That is, annual and perennial herbs, aswell as de-
ciduous and evergreen shrubs and trees, differ in terms of seasonal
growth restrictions and subsequently differ in the timing of leaf death
and deposition. Otherwise, general functional equivalence is assumed
for individual plants within each facet. Key examples include productiv-
ity coefficients, tissue chemistry, and susceptibility to factors causing
mortality, all of which are held identical for all plants in a facet.

Data

Initialization Data
Model initialization is conducted only if no “spin-up” simulation has

been previously run to allow the model to proceed from equilibrium
(e.g., 2 000 yr). Generally, a state variable file is saved from a spin-up
and loaded into memory before proceeding with scenario simulations.
To run a new spin-up, initialization is described in Appendix D.

Input Data
Historical weather data from the Climatic Research Unit (CRU) data-

base (CRU, 2008) at 1° and 0.5° resolution for the yr 1901–2006 are cur-
rently included with model files available for download from the G-
Range website (NREL, 2013). Weather data is stored in global (grid
ASCII) maps, and is required to have the same resolution as the ‘zone’
(cell identifier) map. Monthly precipitation (cm) and monthly maxi-
mum and minimum temperature (°C) are read in at the beginning of
each month.

The effects of a doubling in atmospheric CO2 from350 to 700ppmon
primary production of facets are read in from a scheduling parameter
file, specifying modifying coefficients that increase the productivity of
facets in response to rising CO2 on an annual basis. Because the net ef-
fects of increasing atmospheric CO2 on the productivity of various
types of vegetation are notwell characterized at large scales, coefficients
representing net CO2 effects can be increased or decreased to assess
model sensitivity to putative effects of CO2 on productivity and uncer-
tainty in ecosystem responses to rising CO2.

Fire and fertilization are incorporated in G-Range by default as pa-
rameters (Appendix C) specifying the frequency of fire and fertilization
events probabilistically among cells and years and the proportional
(within-cell) areal extent affected when a fire or fertilization event oc-
curs. Alternatively, fire and fertilization can be scheduled using global
maps specifying the proportions of each grid cell burned or fertilized
on a monthly or annual basis. If the scheduling option is selected,
maps specifying fire and fertilization are listed in scheduling parameter
files and multiple maps can be listed to schedule shifts between man-
agement regimes throughout the course of a simulation.

Output Data
On amonthly basis, global surfaces for each layer of output variables

are written to binary files (extension .gof) structured as a series of
concatenated global maps for each layer of each output requested by
the user. The number of layers possessed by an output variable is deter-
mined by themodel entity to which it is assigned (i.e., one layer for grid
cell− level variables, four layers for variables assigned by soil layers,
three layers for facet-level variables, six layers for variables assigned
by vegetation layers, and five layers for variables assigned by plant
parts. An independent executable, the G-Range exporter, then subsets
the binary files to produce a single monthly global gridded unprojected
(geographic) ASCII map file for each layer of the output variable. The
user then has the choice among any of a variety of platforms for process-
ing and analyzing the global information system− friendly grid ASCII
files.

Model Calibration and Evaluation

Model Calibration
Model parameters were subjected to a sensitivity analysis (Boone

et al., 2013) and then modulated until a global-scale calibration was
achieved in terms of model fit among a battery of global surfaces. Cali-
bration sought agreement with global data layers centered on the yr
2006 ormean values for all years available and focusedmore intensively
on novel G-Range parameters, especially those controlling vegetation
dynamics in the plant populations’ submodels.

Global layers used in calibration included CENTURY outputs
(Henderson et al., 2015) for plant-available soil water, decomposition
coefficients (DEFAC), soil organic C, annual net primary production
(NPP), potential evapotranspiration (PET), and soil surface temperature.
These layers were complemented by additional global layers for annual
evapotranspiration (Zhang et al., 2010), snow-water equivalent
(Armstrong et al., 2005), soil C:N (Batjes, 2002), Tier 1 live carbon den-
sity (Ruesch and Gibbs, 2008), and leaf area index (LAI) derived from
ISLSCP II NDVI (Sietse, 2010). Calibration of vegetation cover sought to
establish dynamic equilibria around 2000–2006 mean MODIS VCF
(Hansen et al., 2006) fractional vegetation cover over the course of a 2
000-yr spin-up simulation using looped historical weather data from
the 20th century (CRU, 2008).

Model Evaluation
As with other models that aim to simulate ecosystem dynamics and

vegetation change at continental to global scales (e.g., Cramer et al.,
2001), the performance of G-Range was judged on its ability to produce
outputs that cut across clouds of data points fromdifferent locations and
years. Simulation and forecasting of biomass production (i.e., forage and
browse) is a central function of G-Range, and evaluation therefore fo-
cused on net primary production (NPP) and vegetation composition in
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terms of herbaceous and woody cover. Evaluation of these model out-
puts would ideally use detailed, empirical data collected at the scale of
globally distributed sites, complemented by global coverages derived
from remote sensing. Because existing NPP databases at site and global
scales each have their own advantages, limitations, and associated er-
rors, NPP data from different sources and scales were selected to en-
compass more theoretically derived (MODIS) and empirical data (field
measurements), obtained respectively at global and site scales. Follow-
ing calibration, selective parameter adjustments were made to harmo-
nize model fit with evaluation data at resolutions finer in terms of
space (individual 0.5° grid cells) and time (multiple years of field
data). Checks were performed to ensure that these parameter adjust-
ments did not compromise the fit of the model to global-scale calibra-
tion datasets—including following repetition of the 2 000-yr spin-up
simulation.

Evaluation focused on two spatial scales: 1) the global extents of
focal biomes comprising major rangeland areas globally and 2) sites
within these focal biomes with available field data. The four biomes
fitting these criteria were “Tropical evergreen forest and woodland,”
“Savanna,” “Grassland/steppe,” and “Open shrubland” or semidesert
(Ramankutty and Foley, 1999). Here, the term “biome” is used to de-
scribe these types rather than “landscape unit,” the term in G-Range pa-
rameters and code.

Evaluation benchmarks in terms of absolute and percent differences
between G-Range outputs and evaluation data (Table 1) were
established to create criteria for evaluating cross-scale model perfor-
mance. To obtain a model fit sufficient for global-scale application, it
was determined that all G-Range output variables, at both global and
site scales, should be on average within either the absolute or percent
difference benchmark for a majority of the focal biomes. These a priori
benchmark target ranges are somewhat arbitrary, and their values
were set after quantitative and qualitative consideration of the magni-
tudes, scale-dependency, and uncertainty embodied in the various eval-
uation data sources available. A model able to produce simulation
outputs within these ranges at both global and site scales should pro-
vide comparable or superior performance to other models currently
available for long-term, dual simulation of global biogeochemistry and
vegetation dynamics. If all model outputs analyzed had values within
these benchmarks, it would not indicate perfect model performance.
Rather, if all valueswerewithin benchmarks, it would indicate a param-
eterization striking a compromise in terms of model fit amongmultiple
reference datasets from multiple sources across two scales of analysis.

Global, biome-level, total net primary production (TNPP = above-
ground + belowground NPP) was evaluated against mean MODIS NPP
(Zhao and Running, 2008) for the yr 2000–2006. G-Range TNPP was
Table 1
Model evaluation benchmarks and results summary. For value presented in bold typeface,
Appendix E, available online at https://doi.org/10.1016/j.rama.2019.03.002).

M
by

Benchmarks Tr
fo

Variable and units Scale Data source Absolute
difference (Abs.)

Percent
difference (%)

Ab

TNPP
(g C m−2 yr−1)

Global MODIS NPP 300 100 14
Site MODIS NPP 300 100 46

ANPP
(g C m−2 yr−1)

Site Field 100 100 −

BNPP
(g C m−2 yr−1)

Site Field 200 100 −
Site Regression 200 100 −

Herb/shrub cover
(% cover)

Global MODIS VCF 25 100 11
Site MODIS VCF 25 100 13

Tree cover
(% cover)

Global MODIS VCF 25 100 −
Site MODIS VCF 25 100 9.

TNPP indicates total net primary productivity; NPP, net primary productivity; ANPP indicates a
summed across all vegetation layers of all facets. Evaluation of TNPP
against MODIS estimates used all 0.5° cells with MODIS TNPP N 0 in
the focal biomes. Cells with MODIS TNPP = 0, which appeared unreli-
able in sparsely vegetated areas, were treated as missing values. Global
facet cover was compared with 2000−2006 mean MODIS VCF herba-
ceous and tree cover (Hansen et al., 2006). Cover of the tree facet in
G-Range was evaluated directly against MODIS tree VCF. Because
MODIS herbaceous VCF aggregates cover of herbaceous and smaller
woody plants, cover of the herb and shrub facets from G-Range were
summed as herb/shrub cover and compared with MODIS herbaceous
VCF. In addition to global contrasts, TNPP and facet cover were evalu-
ated against the same global layers at grid cell level for sites with avail-
able field data.

At site scales, modeled herbaceous annual aboveground net primary
production (ANPP) was evaluated against field measures of herbaceous
ANPP estimated from biomass harvest (“field ANPP”), quantified as
peak standing crop, the sum of annual maximum live and recent dead
biomass (excluding litter). Belowground net primary production
(BNPP) was evaluated against two measures of herbaceous annual
BNPP: 1) BNPP field measures (“field BNPP”) from root-ingrowth or
minirhizotron methods in the few sites and years where available and
otherwise from root biomass harvest; and 2) BNPP calculated from a
standard global regression equation (“regression BNPP”) as a function
of field ANPP and mean annual temperature (MAT) (Gill et al., 2002).
Regression BNPP, a method relying on turnover rates from sequential
coring techniques known to be unreliable (Milchunas, 2009), is pre-
sented for purposes of comparison with field BNPP.

Fieldmeasures of BNPP from root biomass harvestwere calculated as
the MAT-weighted mean of two root production indicators providing,
respectively, liberal and conservative estimates (Scurlock et al., 2002)
of root production: 1) annual maximum root biomass and 2) annual
maximum–minimum root biomass. Annual maximum root biomass
often overestimates BNPP, especially in cold climates with slow turn-
over, while annual maximum–minimum root biomass often underesti-
mates, especially in hot climates with rapid turnover. At the lowest
MAT (–4.3°C) among the evaluation sites, maximum root biomass was
weighted at 0, maximum–minimum root biomass was weighted at
1, and BNPP was calculated as the mean of the two weighted
indicators. AsMAT increased to the highest among sites (33.2°C), indica-
tor weights increased linearly to 1 and 0, respectively (for full detail, see
Appendix E).

Evaluation of ANPP and BNPP at site scales used data from all years
with field data available. ANPP and BNPP data from plots with no
woody overstory were compared with G-Range ANPP and BNPP for
the unshaded vegetation layer of the herb facet. The final dataset
G-Range outputs did not meet evaluation benchmarks (for full evaluation results, see

odeled–observed difference,
biome (“landscape unit”)

opical evergreen
rest

Savanna Grassland/steppe Open shrubland
(semidesert)

s. % Abs. % Abs. % Abs. %

1.0 34.7 99.3 121.1 −33.7 49.3 −47.3 16.1
5.6 95.9 155.2 121.5 −37.6 10.3 81.3 47.5
103.5 −29.7 −59.1 107.0 −17.5 59.0 26.6 137.9

514.6 −63.5 −321.4 30.5 −102.9 246.5 186.7 974.0
42.1 −11.5 −63.0 −6.1 −148.1 -48.1 −159.0 −52.8
.0 28.8 12.3 22.7 9.1 100.3 42.8 705.3
.2 18.8 8.8 12.9 −16.0 −13.7 18.3 100.9
18.3 −10.2 −8.2 86.4 −1.4 321.5 2.3 282.4
8 193.9 6.8 226.4 −0.1 254.2 0.0 0.0

boveground net primary productivity; BNPP, belowground net primary productivity.

https://doi.org/10.1016/j.rama.2019.03.002
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comprised 317 site-yr for field ANPP (and regression BNPP) and 97 site-
yr for field BNPP (Appendix E).

Results

Model Evaluation

Because G-Range is primarily designed for global application, evalu-
ation results are reported for global coverages of the four rangeland bi-
omes evaluated and among sites within those biomes. For full global
and site-level evaluation results, or for regional or location-specific re-
sults and model errors, see Appendix E.

At both global and site scales, G-Range total net primary production
(TNPP; aboveground + belowground) difference from MODIS TNPP
was generally within the established a priori benchmarks for tolerable
model error in terms of absolute and percent difference (see Table 1,
Figure 3.G-Range evaluation, on global and site scales, against globalMODIS layers for annual to
second and third quartiles, overlain with means, root mean squared error, and evaluation benc
Fig. 3, Fig. E.1). In savannas, G-Range exceeded the percent difference
benchmark for TNPP at both global and site scales. Tropical evergreen
forest (“tropical evergreen forest and woodland”) exceeded the abso-
lute difference benchmark at site but not global scales.

Difference in G-Range aboveground net primary production (ANPP)
from field ANPP among all site-yr of available data waswithin the abso-
lute difference benchmark for sites in savanna, open shrubland, and
grassland (see Table 1, Fig. 4). Of these biomes, the percent difference
benchmark was exceeded slightly in savannas and moderately in open
shrubland. Tropical evergreen forest sites narrowly exceeded the abso-
lute difference benchmark.

G-Range belowground net primary production (BNPP) was within
benchmarks for percent difference, but not absolute difference, from
field BNPP for sites in the two more productive biomes, tropical ever-
green forest and savanna (see Table 1, see Fig. 4). In contrast, sites in
the less productive biomes, grassland and open shrubland, were on
tal net primary production and fractional vegetation cover. Boxplots show themedian and
hmarks.



Figure 4. Site-scale G-Range evaluation against field measures of annual aboveground net primary production and annual belowground net primary production (BNPP) from field
measures and global regression (regression BNPP). Boxplots show themedian and second and third quartiles, overlain withmeans, rootmean squared error, and evaluation benchmarks.
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average within benchmarks for absolute, but not percent, difference
from field BNPP. G-Rangewas alwayswithin benchmarks for regression
BNPP.

Global difference in G-Range herb/shrub (facet) cover from MODIS
VCF herbaceous coverwas low for all biomes other than open shrubland
(see Table 1, Fig. 3, Fig. E.2). At site scales, herb/shrub cover in open
shrubland again exceeded the percent benchmark, although slightly.

Absolute difference in global G-Range tree (facet) cover fromMODIS
VCF tree coverwas generally low, aswas percent difference for those bi-
omes with significant tree cover, tropical evergreen forest and savanna
(see Table 1, Fig. 3, Fig. E.3). At site scales, tree cover in G-Range was
comparable to MODIS VCF. Sites in all biomes other than open shrub-
land (which had no trees) exceeded the percent difference benchmark
for tree cover.

All output variables met the established evaluation criteria in most
of the focal biomes, as they were generally within one or both
benchmarked differences fromevaluation data at both scales of analysis.
Unsurprisingly, biomes with higher values (e.g., more productive bi-
omes) had a greater tendency to attain percent difference benchmarks,
while biomes with lower values achieved absolute difference bench-
marks more easily. Modest changes in parameter values and model er-
rors with respect to the different NPP datasets revealed significant
trade-offs precluding maximization of model fit to all evaluation
datasets at all scales.

The sign of absolute difference in G-Range NPP from theMODIS and
field NPP datasets exhibited consistent, opposing trends along the pro-
ductivity gradient among biomes (see Table 1, Figs. 3 and 4). In more
productive biomes, G-Range TNPP tended to exceed MODIS TNPP at
both global and site scales and tended to be lower than MODIS in less
productive biomes (see Table 1, Fig. 3). In contrast, G-Range NPP fell
below field measures of ANPP and BNPP in more productive biomes,
with errors trending positive as biome productivity decreased (see
Table 1, Fig. 4). No such trade-off was apparent in grasslands, where
NPP exhibited generally good, if somewhat conservative, fits to the
MODIS and field datasets for NPP.
Vegetation coverwas generally within benchmarks and indicative of
similar vegetation composition to MODIS observations. There was one
exception, that G-Range herb/shrub cover was substantially higher
than MODIS herbaceous VCF in open shrubland. As during calibration,
facet covers fluctuated around dynamic equilibria approximating
MODIS VCF vegetation cover over the course of a 2 000-yr spin-up sim-
ulation. That is, facet covers did not surge or crash dramatically but
rather shifted slowly andmoderately in response to variation in climatic
conditions and competition among vegetation facets, with little change
in long-term means.

Superior fits to evaluation data were achievable, for each individual
G-Range output variable, at each individual scale of assessment. How-
ever, further reductions in simultaneous divergence frommultiple eval-
uation datasets and scales were constrained by trade-offs in model fit
among variables, evaluation datasets, and scales. Changes to parameter
settings that substantively improvedmodelfit for any specific output ei-
ther degraded model fit to other evaluation datasets or degraded fit at
the other scale of analysis. That is, improving model fit for one specific
variable, at one specific scale of analysis, invariably worsened model
fit for other variables or scales. Moreover, variable- and scale-specific
gains in model fit generally came at the cost of poorer fits to global cal-
ibration layers.

Discussion

Calibration of G-Range with global layers from CENTURY and other
sources established initial confidence in the model (Boone et al.,
2013), and evaluation provided further confirmation of the perfor-
mance of G-Range given its structure, parameterization, and purpose.
Evaluation of G-Range against multiple datasets from different sources
and scales demonstrated the ability of the model to emulate important
structural (cover) and functional (NPP) attributes of rangeland ecosys-
tems in globally prominent rangeland biomes, as well as for sites within
those biomes. The current G-Range implementation is appropriate for
global-scale application (and, in some cases, at regional and national
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scales), especially long-term simulation and projection of ecosystem
processes, ecosystem services, and vegetation states in rangelands. For
projections of rangeland ecosystem responses to climate change
through 2050 using G-Range, see Boone et al. (2018).

Drawing the linkages between biogeochemistry and vegetation
cover is advantageous in rangelands and drylands because ecosys-
tem processes and services are known to vary with the dominance
of different vegetation types (Anderies et al., 2002; Hibbard et al.,
2003; Huxman et al., 2005). For example, an increase in fire fre-
quency in a mixed herbaceous–woody system will typically cause
the populations and cover of woody shrubs and trees to decline rel-
ative to grasses, causing rates of ecosystem processes at system
level to increasingly reflect the rising dominance of herbaceous
plants. Generally, a system-level shift toward grassy dominance
would increase root-to-shoot ratio (Jackson et al., 2007) and propor-
tional belowground carbon allocation and might reduce primary
production and total ecosystem C storage (Eldridge et al., 2011). In
arid systems, a grassy state can be more productive than shrubs
(Knapp et al., 2008), resulting in positive feedbacks on ecosystem
processes mediated by ecosystem productivity. Even where primary
production and carbon storage decline under a grassy state, other
ecosystem services may improve (Veldman et al., 2015), including
hydrological flows (Jackson et al., 2005) and production of grass for-
age for grazing animals. The rationale for including bare ground in G-
Range will be obvious to rangeland scientists, while global models
that lack bare ground have limited applicability in rangelands.

The evaluation process identified overestimation and underestima-
tion by G-Range in relation to various sources of evaluation data, with
some errors contradicting one another. Each evaluation dataset has its
ownmerits, and nounequivocally superior source of evaluation data ex-
ists for any output variable considered here, at global or site scales. Our
approach was to harmonize model fit among multiple evaluation
datasets from divergent origins and methodologies, each credible in
the ecological and rangeland sciences. With each dataset contributing
its version of “truth,” this approach tests whether the currentmodel im-
plementation integrates across the information embedded in evaluation
datasets from various sources, methodologies, and scales. Here, some
evaluation datasets—belowground production (BNPP) and remotely
sensed herbaceous cover (MODIS herbaceous VCF)—are considered in
spite of their methodological limitations and higher uncertainty, as
they play critical roles in rangeland ecosystems.

Belowground production has important implications for ecosystem
services, such as soil improvement, C sequestration, and hydrological
function, but it is known that BNPP is highly uncertain in perennial
grasslands and other rangelands (see also Appendix E). Site-level
model errors for field BNPP were to some extent attributable to the
methods used to quantify root production under field conditions.
BNPP estimated from regression (Gill et al., 2002), a questionable
method—due to its reliance on turnover rates derived from sequential
coring techniques known to be unreliable (Milchunas, 2009)—was pre-
sented for comparison with the techniques we prefer for quantifying
BNPP. Root biomass coring methods can either underestimate or over-
estimate BNPP, depending on rates of root biomass turnover and yr-
to-yr carryover of biomass largely associated with temperature. The
likelihood of both underestimation and overestimation in different re-
gions drove development of the approach for calculating BNPP from
biomass harvests employed here (for full details, see Appendix E).
BNPP from this “bracketing” method should be closer to “true” BNPP
and had lower uncertainty (lower coefficient of variation) than alterna-
tive methods of estimating BNPP from biomass harvest, though its un-
certainty remains high (Sircely, unpublished data).

MODIS NPP and herbaceous VCF products can have significant limi-
tations in some regions, including drylands and the global tropics. In
arid regions known to have significant herbaceous cover, the common-
ness of low or zero values (or incalculable; “no-data”) for MODIS prod-
ucts may be partly attributable to satellite signal limitations (Zhao and
Running, 2008), growth constraints in the MODIS GPP and NPP algo-
rithms (Gebremichael and Barros, 2006; Mu et al., 2007), and the lim-
ited number of independent evaluation assessments conducted for
herbaceous VCF. BecauseMODIS NPP and herbaceous VCF appear to fre-
quently underestimate both NPP and herbaceous vegetation cover in
arid systems, some apparent overestimation by G-Range with respect
toMODIS-derived values for TNPP and herb and shrub covermay there-
fore be desirable in some areas known to have sparse but significant
herbaceous cover (of course, these errors may be quite undesirable
and problematic in truly barren rangelands). Although promising
remote-sensing approaches for separating fractional cover of different
vegetation types are in development (Guerschman and Hill, 2018),
there are currently few alternatives to MODIS herbaceous VCF for eval-
uation of vegetation structure on a global scale. A particularly salient ob-
servation from evaluation was the presence of recalcitrant trade-offs in
model fit among output variables (NPP vs. facet cover), evaluation data
sources (MODIS vs. field), and spatial scales (global vs. site). Some
trade-offs, especially for NPP, were unequivocally apparent in the sign
of error (see Table 1), regardless of parameterization. Assuming that
MODIS and field NPP contain equally valid information, these trends in-
dicate a general trade-off facing model parameterization, precluding
maximal model fit to both MODIS and field NPP. Other trade-offs were
observed through parameter adjustments, notably surging or crashing
of either NPP or the cover of a certain facet. The current model parame-
terization is not universally optimized, and computationally intensive
permutation of parameter values to resolve comprehensive response
surfaces would be valuable, though it is unclear how much accuracy
would be gained.

The observed trade-offs in model fit suggest that multidimensional
constraints limit the achievable external validity of simulations given
available evaluation datasets. Such pervasive trade-offs suggest that
dramatic changes to model parameterization would be warranted in
the presence of more accurate evaluation data, over longer time scales,
at greater spatial extents (for field data), or at finer spatial resolution
(for remote sensing datasets). Though challenging for future improve-
ment of the model, and for simulation of the global rangelands more
generally, the observed trade-offs indicated that, to the extent feasible,
the current model parameterization harmonizedmodel fit across vastly
different scales with respect to the selected evaluation datasets.

G-Range employs mechanistic representation of ecosystem pro-
cesses grounded by largely phenomenological reproduction of historical
vegetation structure. The ability of G-Range to reproduce observed his-
torical vegetation structure (fromMODIS VCF) overmillennia-long sim-
ulations with limited divergence suggests that interactions among
vegetation facets in the model may adequately represent the joint out-
comes of the myriad, complex mechanisms through which real plants
interact. For example, the effect of moisture stress (H2O:PET) on estab-
lishment or death can be considered to reflect not only the combined ef-
fects of water and heat stress but also the multiple factors influencing
complex interactions among water availability, temperature, and plant
competition. The goal in developing the G-Range plant populations’
submodels was to represent the joint outcomes of abiotic,management,
and competitive effects on plant population dynamics, rather than spe-
cific effects of each factor.

In representing coupled changes in vegetation and ecosystem func-
tion, G-Range presents an alternative to other existing models, notably
dynamic global vegetation models (DGVMs), which generally empha-
size mechanism over phenomenological representation of empirical
data or observations (e.g., Sitch et al., 2008; Piao et al., 2013). The cali-
bration objective of dynamic G-Range facet covers diverging only mod-
estly from historical vegetation cover (from MODIS VCF) following a 2
000-yr simulation stands in contrast to seekingmechanistic representa-
tion of vegetation interactions in globally distributed rangelands as di-
verse as savannas, semideserts, and humid tropical grasslands. In arid
and semiarid rangelands, vegetation interactions and the relative effects
of multiple ecosystem change drivers remain uncertain and vigorously
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debated (D’Odorico et al., 2013), posing a significant challenge tomech-
anistic representation. In the global rangelands, it was deemed more
pragmatic to collapse the wide variety of factors affecting plant estab-
lishment and death into a minimal set of parameters tuned to maintain
long-term (2 000 yr) dynamic equilibria around historical vegetation
patterns under 20th century climatic conditions.

Competition among facets leading to reduced establishment is rep-
resented explicitly in the plant populations’ submodels, while any facil-
itation of establishment is implicit. The phenomenological training of
the plant populations’ submodels onMODIS VCF constrained parameter
settings for facet interactions to negative values; parameterizing
positive response curves is possible but can produce massive
overestablishment (e.g., “deserts” with full grass cover). The assump-
tion of a net-negative tendency for facet interactions is a simplification
of actual plant interactions, which are a net of negative and positive ef-
fects. Interfacet competition for light, soil nutrients, or water follows
CENTURY in assuming overstory suppression of understory production.

Net positive effects of woody plants on herbaceous production pre-
vail at fine scales in arid and semiarid rangelands (Dohn et al., 2013), ef-
fects that could scale up to affect herbaceous establishment, mortality,
and facet cover over large areas. However, in a semiarid savanna, com-
petition betweenwoody and herbaceous plants becamemore apparent
as scale increased even within a single site (Riginos et al., 2009). Differ-
ent plant growth forms, or functional types, generally have a competi-
tive advantage under certain environmental conditions, meaning that
woody-herbaceous competition could prevail over facilitation at greater
scales. The net-negative assumption should bemore valid over the large
scales and multiple years for which G-Range is designed and is more
likely to be violated in arid rangelands than in semiarid to humid
rangelands.

In arid rangelands (e.g., b 200 mm yr−1), climate and species com-
position could cause establishment to be effectively facilitation depen-
dent (i.e., most establishment occurs under scattered woody canopies,
in most years), thus violating the net negative assumption. Even in
arid rangelands, facilitation in years of higher rainfall can give way to
transient competition during drier years (Tielborger and Kadmon,
2000; Jankju, 2013),meaning that facilitation could boost establishment
more stronglywhen it is less important (under “average” rainfall, estab-
lishment in arid rangelands is widespread and largely decoupled from
plant interactions). Using variation in climatic conditions within desert
and semidesert (“open shrubland” and “dense shrubland”) biomes to
modulate parameterized plant interactions (response curves) might
improve model performance in dry rangelands. Where facilitation is
not of overwhelming importance for establishment, the assumption of
net negative facet interactions appears likely to hold.

The empirical training of the plant populations’ submodels is the
most important phenomenological element of the model, though not
the only one. Another example is the effect of future atmospheric CO2

levels on productivity; the Farquhar equation used in some DGVMs
(e.g., LPJ; Ardö, 2015) prevents downregulation of photosynthesis at
high CO2 (El Maayar et al., 2006). G-Range, like CENTURY, takes the
more phenomenological approach of scheduling CO2 effects on produc-
tivity using input files. Further, and also unlike DGVMs, G-Range does
not attempt mechanistic representation of biome distributions. While
DGVMs allow for process-based migration of biomes in response to
forcing drivers (especially climate), biome distributions are static in G-
Range. Rather, gross vegetation composition—the balance among
trees, shrubs, herbs, and bare ground—shifts within biomes in G-
Range, resulting in potentially major changes in vegetation structural
configuration, without altering biome distributions. Allowing vegeta-
tion structure and cover to shift within biomes, resulting in a hodge-
podge of emergent configurations, may be more realistic than
assuming migration of biome-specific vegetation. In preventing biomes
frommigrating, G-Rangemay producemore conservative (ormore pes-
simistic) results where existing ecosystems are vulnerable to climate
change, which comports with known limitations on species and
ecosystem range shifts, such as dispersal and habitat fragmentation
(Svenning and Sandel, 2013). By combining process-based (biogeo-
chemistry) and empirical (vegetation dynamics) modeling approaches,
G-Range forms part of the trend toward complementary integration of
mechanism and phenomenology in ecosystem modeling (Adams et al.,
2013).

The central advantage of G-Range is that it allows global change
drivers to directly and independently modify ecosystem processes ver-
sus vegetation structure, as well as indirectly through interactions and
feedbacks between ecosystem processes and vegetation dynamics. The
effects of climate change can thus be predominately mediated by either
climatic effects on ecosystem processes (e.g., diminished productivity
due to drought) or climate-induced vegetation change (e.g., expansion
of shrubs into former grasslands), and similarly, management drivers
can force changes primarily through either biogeochemical or vegeta-
tion pathways.

The greatest sources of uncertainty in G-Range parameterization
and performance are the relative effects of drivers such as climate, fire,
grazing, and atmospheric CO2 on vegetation change in rangelands. Fur-
thermore, the current implementation of the plant populations’
submodels responsible for vegetation change in G-Range is capable of
producing multiple solutions. Replicated regional simulation experi-
ments using G-Range to reproduce trends of vegetation change would
help train the model to more precisely reflect specific or combinatory
drivers of rangeland vegetation change. Because G-Range can emulate
vegetation structure under historical climatic conditions over the course
of 2 000-yr simulations, major divergences from historical vegetation
patterns driven by climate and CO2 scenarios should primarily indicate
climate and CO2 effects rather than model specification. Still, G-Range
should be applied across a range of climate and CO2 scenarios to address
uncertainty in climatic input datasets.

In light of themodel evaluation results, the structure andparameter-
ization of G-Range can be deemed sufficient for a variety of uses. Appro-
priate applications of the current model configuration include
simulating and forecasting the cycling of C, N, andwater, as well as veg-
etation states and their dynamics, in rangeland ecosystems on a global
scale. While G-Range can be applied at regional or even national scales,
spatial variation inmodel performance should be assessed beforemodel
application. G-Range is particularly well suited to generating medium-
(e.g., decadal) to long-term projections of the impacts of changes in cli-
mate and atmospheric CO2 on ecosystem services, such as forage and
browse production and C sequestration. Such forecasts can help gauge
the long-term production potential of existing rangeland systems
given future climatic and atmospheric conditions and provide guidance
where novel drylands develop as a result of aridification. Forecasting the
future structure and function of rangeland ecosystems can provide a
foundation for developing and targeting feasible options for adapting
rangeland systems to withstand changes in climate and atmospheric
CO2 and mitigating CO2 emissions in rangelands and other drylands.
Supplementary data to this article can be found online at https://doi

org/10.1016/j.rama.2019.03.002.
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